
18CV52

Fifth Semester B.E. Degree Examination, July/August 2021 Analysis of Indeterminate Structure

Time: 3 hrs .

Note: Answer any FIVE full questions.

1

Fig.Q1
Analyze continuous beam ABCD by slope deflection method. Construct SFD and BMD.

EI - constant
(20 Marks)
2 Analyze the frame shown in Fig.Q2 by slope deflection method and draw BMD.

(20 Marks)
3 Analyze the continuous beam ABCD loaded as shown in Fig.Q3 if settlement in support B and C are 5 mm and 10 mm respectively. Use moment distribution method. Take $E I=2.7 \times 10^{5} \mathrm{kN}-\mathrm{m}^{2}$. Draw BMD.

Fig.Q3

(20 Marks)
4 Analyze the frame loaded as shown in Fig.Q4. Use moment distribution method.

Fig.Q4

(20 Marks)
5 Analyze the beam shown in Fig.Q5 by Kani's method. Draw BMD.

Fig.Q5

(20 Marks)

Fig.Q6
Analyze the frame shown in Fig.Q6 by Kani's method. (Make use of symmetry)

(20 Marks)
7 Analyze the continuous beam shown in Fig.Q7 by flexibility method. Draw BMD.

Fig.Q7

(20 Marks)
8 Analyze frame shown in Fig.Q8 by flexibility matrix approach. Draw BMD.

Fig.Q8

(20 Marks)

Analyze the continuous beam shown in Fig.Q9 by stiffness matrix method. Take EI constant.

Fig.Q9

(20 Marks)
10 Analyze the pin-jointed truss shown in Fig.Q10 by stiffness matrix method. Take crosssectional area for all members $=1000 \mathrm{~mm}^{2}$ and $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.

(20 Marks)

